The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 0 X X X^2 X X 0 X^2 X^2 X^2 0 0 X X 0 X^2 X X X X 0 X^2 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 X 0 0 X X X^2 X^2 X^2+X X^2+X X^2 X^2 X^2+X X^2+X 0 X^2 X X^2+X 0 X^2 X X^2+X X^2 0 X^2+X X X^2 0 X^2+X X X^2 X X 0 X^2+X X X^2+X X^2+X 0 X^2 X X X X X X X^2 0 X^2 X 0 X^2+X X X 0 0 X^2 X^2 0 0 X^2 X^2 X^2 X^2 0 0 X X X^2+X X^2+X X^2+X X^2+X X X 0 0 X^2 X^2 0 0 0 X X X^2 X^2+X X^2+X X^2 X^2 X X^2+X 0 0 X^2+X X X^2 0 X X 0 X^2 X^2+X X^2+X X^2 X^2 X^2+X X^2+X X^2 0 X X 0 X X X^2 X X 0 0 X^2 X X X X^2+X X^2+X X X^2 0 X X X^2+X X^2+X X^2+X X^2+X 0 X^2 0 X^2 X^2 0 0 X^2 X^2 0 X X^2+X X^2+X X X X^2+X X^2+X X 0 X^2 X^2 0 0 X^2 X^2 0 0 generates a code of length 81 over Z2[X]/(X^3) who´s minimum homogenous weight is 80. Homogenous weight enumerator: w(x)=1x^0+15x^80+88x^81+12x^82+8x^85+3x^90+1x^106 The gray image is a linear code over GF(2) with n=324, k=7 and d=160. This code was found by Heurico 1.16 in 0.266 seconds.